浅谈视频监控系统与人脸识别技术的结合应用

2019-11-29 17:15   96次浏览

随着信息技术不断发展,视频信息越来越广泛的应用与娱乐、教育、安全、生活等各种领域。介绍了人脸识别技术的研究方向、应用领域及技术优势并针对人脸识别技术在视频监控系统中应用的架构、关键技术和算法做了有益的探讨特别对矫正有旋转角度的人脸图像技术做了较为详尽的表述。最后得出结论人脸识别技术可以应用于监控系统中。而基于人脸识别技术的智能视频监控系统应该具有十分广泛的应用前景。

1 视频监控系统的应用现状

视频监控系统的发展经历了代的全模拟系统、第二代的部分数字化的系统、第三代的完全数字化的系统(网络摄像机和视频服务器)三个阶段的发展演变。现有的数字视频监控系统实现了视频监控手段的数字化、网络化和集成化,但是它存在一个最主要的缺陷:对视频内容只能靠人来判断,同时,它多用于“事后处理”,并不能充分发挥视频监控系统的主动性。基于先进生物特征识别技术的

人脸识别智能视频监控系统的出现是视频监控系统发展的又一标志,智能视频监控系统能够识别不同的物体,发现监控画面中的异常情况,并能够以最快和的方式发出警报和提供有用信息,从而能够更加有效地协助安全人员处理危机,并限度地降低误报和漏报现象。

2 人脸识别技术

2.1 人脸识别技术的研究及应用范畴。

人脸识别(Face Recognition)亦称面像识别是人类视觉系统的基本功能,也是人类互相辨识的最直接手段,因此他是生物特征识别中的重要研究内容。人脸识别技术作为一种新兴的生物特征识别技术,概括说,他是一种依据人体面部特征的自动身份鉴别技术。人脸识别综合运用了数字图像/视频处理、模式识别、计算机视觉等多种技术。人脸识别技术在公共安全、人机交互等领域具有广泛的应用前景,这一点已经为世人所公认。同时,人脸识别也是人工智能领域的重大研究课题,因此吸引了大量的研究人员对此展开深入研究,到现在已有30 多年的研究历史。自20 世纪90年代以来(特别是美国“911”恐怖袭击事件发生以后),人脸识别技术在研究及应用方面更是得到了长足的发展。人脸识别的研究范围大致可以分为如下几个方面的内容:

(1)人脸检测(Face Detection):即从各种不同的场景中检测出人脸的存在并确定其位置。在大多数的场合中由于场景较复杂,人脸的位置是预先不知道的,因而首先必须确定场景中是否存在人脸,如果存在人脸,再确定图像中人脸的位置。脸部毛发、化妆品、光照、噪声、面部倾斜和人脸大小变化以及各种遮挡等因素会使人脸检测问题变得更为复杂。人脸检测的主要目的是在输入的整幅图像上寻找人脸区域,把图像分割成两个部分2 人脸区域和非人脸区域,从而为后续处理奠定基础。

(2)人脸表征(FaceRepresentation):即采取某种表示方式表示检测出的人脸和数据库中的已知人脸。通常的表示法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵特征矢量)、固定特征模板、特征脸、云纹图等。

(3)人脸辨识(FaceIdentification):即将已检测到的待识别的人脸与数据库中的已知人脸进行比较匹配,得出相关信息,这一过程的核心是选择适当的人脸的表征方式与匹配策略,系统的构造与人脸的表征方式密切相关。通常或是选择全局的方法或是选择基于特征的方法进行匹配。显然,基于侧面像所选择的特征和基于正面像的特征是有很大的区别的。

免责声明:本文来自自媒体,不代表安防城的观点和立场
精彩推荐